Warning: mkdir(): No space left on device in /var/www/tg-me/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/dsproglib/--): Failed to open stream: No such file or directory in /var/www/tg-me/post.php on line 50
Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение | Telegram Webview: dsproglib/6499 -
Telegram Group & Telegram Channel
🧪 How-to: применить bootstrapping для оценки статистик

Когда данных немного или нет уверенности в распределении, bootstrapping приходит на помощь. Это техника, позволяющая оценить доверительные интервалы и стабильность метрик без строгих статистических предположений.

🚩 Что делать

Мы будем многократно пересэмплировать нашу выборку с возвращением и оценивать интересующую статистику (среднее, медиану, разницу, корреляцию и т.д.).

🚩 Шаги:

1️⃣ Импорт библиотек:
import numpy as np
from sklearn.utils import resample


2️⃣ Готовим данные:
data = np.array([12, 15, 14, 10, 8, 11, 13])  # пример


3️⃣ Запускаем бутстрэп:
boot_means = []

for _ in range(1000): # количество повторений
sample = resample(data, replace=True)
boot_means.append(np.mean(sample))


4️⃣ Оцениваем результат:
conf_int = np.percentile(boot_means, [2.5, 97.5])
print(f"95% доверительный интервал для среднего: {conf_int}")


🚩 На что обратить внимание:
📍 Используйте не менее 1000 итераций для устойчивых результатов.
📍 При маленьких выборках возможны смещения и высокая дисперсия.
📍 Если данные сильно несбалансированы — будьте осторожны с интерпретацией.

🚩 Основные преимущества:
✔️ Гибкость — можно применять к любым статистикам, особенно если неизвестно теоретическое распределение.
✔️ Без предположений — не требует априорных знаний о распределении в популяции.
✔️ Надёжность — работает даже при небольшом объёме выборки.

Библиотека дата-сайентиста #буст
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/dsproglib/6499
Create:
Last Update:

🧪 How-to: применить bootstrapping для оценки статистик

Когда данных немного или нет уверенности в распределении, bootstrapping приходит на помощь. Это техника, позволяющая оценить доверительные интервалы и стабильность метрик без строгих статистических предположений.

🚩 Что делать

Мы будем многократно пересэмплировать нашу выборку с возвращением и оценивать интересующую статистику (среднее, медиану, разницу, корреляцию и т.д.).

🚩 Шаги:

1️⃣ Импорт библиотек:

import numpy as np
from sklearn.utils import resample


2️⃣ Готовим данные:
data = np.array([12, 15, 14, 10, 8, 11, 13])  # пример


3️⃣ Запускаем бутстрэп:
boot_means = []

for _ in range(1000): # количество повторений
sample = resample(data, replace=True)
boot_means.append(np.mean(sample))


4️⃣ Оцениваем результат:
conf_int = np.percentile(boot_means, [2.5, 97.5])
print(f"95% доверительный интервал для среднего: {conf_int}")


🚩 На что обратить внимание:
📍 Используйте не менее 1000 итераций для устойчивых результатов.
📍 При маленьких выборках возможны смещения и высокая дисперсия.
📍 Если данные сильно несбалансированы — будьте осторожны с интерпретацией.

🚩 Основные преимущества:
✔️ Гибкость — можно применять к любым статистикам, особенно если неизвестно теоретическое распределение.
✔️ Без предположений — не требует априорных знаний о распределении в популяции.
✔️ Надёжность — работает даже при небольшом объёме выборки.

Библиотека дата-сайентиста #буст

BY Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение




Share with your friend now:
tg-me.com/dsproglib/6499

View MORE
Open in Telegram


Библиотека data scientist’а | Data Science Machine learning анализ данных машинное обучение Telegram | DID YOU KNOW?

Date: |

Spiking bond yields driving sharp losses in tech stocks

A spike in interest rates since the start of the year has accelerated a rotation out of high-growth technology stocks and into value stocks poised to benefit from a reopening of the economy. The Nasdaq has fallen more than 10% over the past month as the Dow has soared to record highs, with a spike in the 10-year US Treasury yield acting as the main catalyst. It recently surged to a cycle high of more than 1.60% after starting the year below 1%. But according to Jim Paulsen, the Leuthold Group's chief investment strategist, rising interest rates do not represent a long-term threat to the stock market. Paulsen expects the 10-year yield to cross 2% by the end of the year. A spike in interest rates and its impact on the stock market depends on the economic backdrop, according to Paulsen. Rising interest rates amid a strengthening economy "may prove no challenge at all for stocks," Paulsen said.

What is Telegram Possible Future Strategies?

Cryptoassets enthusiasts use this application for their trade activities, and they may make donations for this cause.If somehow Telegram do run out of money to sustain themselves they will probably introduce some features that will not hinder the rudimentary principle of Telegram but provide users with enhanced and enriched experience. This could be similar to features where characters can be customized in a game which directly do not affect the in-game strategies but add to the experience.

Библиотека data scientist’а | Data Science Machine learning анализ данных машинное обучение from ye


Telegram Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение
FROM USA